—— S
AD=AO60 850 HONEYWELL INC MINNEAPOLIS MINN STSTEMS AND RESEARCH ==ETC F/6 17/% o
PROTOTYPE AUTOMATIC TARGET SCREENER. (U) :

SEP 78 D E SOLAND» P M NARENDRA: R C FITCH DAAK70=77=C=0248
UNCLASSIFIED TOSRCSA=3 NL

\l

PROTOTYPE
AUTOMATIC TARGET SCREENER

By

D.E. Soland m nom
P.M. Narendra i,E&“ T
R.C. Fitch

D.V. Serreyn
T.6. Kopet

AA0O60850

"v'lr"g.-‘.'. .

DDC Ft copy

Honeywell
SYSTEMS & RESEARCH CENTER T 0

2600 RIDGWAY PARKWAY M2 I R,
MINNEAPOLIS, MINNESOTA 55413 I 1978 U]
|
|

September 1, 1978
Quarterly Progress Report 1 April-30 June 1978

-

-——

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

Prepared for

U.S. Army Mobility Equipment
Research and Development Command,
Night Vision and Electre-Optics Laberatory
Fort Belveir, Virginia 22060

e —— A Lt S —

""The views, opinions, and/or findings contained in this
report are those of the authors and should not be construed
as an official Department of the Army position, policy, or
decision, unless so designated by other documentations. "

: —7 » tANT NUMBER(S)
D. Eoland P ;1 B, erreyn
T

UNCLASSIFIED

"SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOV'T ACCESSION NUMBER [3. RECIPIENT'S CATALOG NUMBER
[« i FreTAND SUBTITCEY "5 -
Quarterly Pgogress Lt ' T
PROTOTYPE AUTOMATIC TARGET SCREENER?] | {1 Aprik ¢e=30 June 878
- P "' = s (V]
78SRC54~3

V.
‘§‘/K°pet @ DAAK?ﬂ-77-C-tfzgj

=

%&NIZATOONS NAME/A f 10. PROGRAM ELEMENT,PRO ASK AREA
—Honmeywell Systems esearch Center UNIT NUMBERS [/
26.00 Ridgway Parkway . / 1E2637WDK7}{ 1 b10cy

Minneapolis, Minnesota 55413

f arendra- /

11. CONTROLLING OFFICE NAME/ADDRESS / ;—-‘Ww
: e UGt 78
Night Vision and Electro-Optics Laboratory@_i S > /
Fort Belvoir, Virginia 22060 '108
T3, MONITORING AGENCY NAME/ADDRESS (IF DI TOFF.) [15. SECURITY CLASSIFICATION (OF THI

¥ Unclassified
)
- 15a. DECLASSIFICATION DOWNGRADING SCHEDULE

/[

16. DISTRIBUTION STATEMENT (OF THIS REPORT)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (OF THE ABSTRAC NTERED INBLOCK 20, IF DIFFERENT FROM REPORT)

18. SUPPLEMENTARY NOTES

. KEY W S (C INU | | L)

Infrared Target recognition Image enhancement
FLIR Pattern recognition

Target cueing Image processing

Target screening Real-time

20) A A ([¥] [}
This report is the third quarterly progress report for contract DAAK70-77-C-0248,

3| Prototype Automatic Target Screener. The objective of the effort is to design an
z| automatic target screener to be used with thermal imaging systems employing common
] module components.
<
F
DD ,9%%, 1473 eoimion oF 1 NOV 88 IS ORsOLETE UNCLASSIFIED
AP, 2 46
{92349
o - e " Y o

!

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

Ccu

RS % "m "f,-;i!‘s ! ;

Hi

i
o
AGE (WHEN DATA ENTERE O [
e
po

i AP Nl R

CONTENTS

Section

I INTRODUCTION AND SUMMARY

II CLASSIFIER OPTIMIZATION

Clutter Rejection Classifier

Computational Considerations

Recognition Classifier
The kNN Classifier
Feature Subset Selection
Optimum Moment Subset Selection
Choice of Distance Measure

Fast NN Computation

Interframe Analysis
Decision Smoothing by Bayes' Theroem
Priority Target Mode

III SOFTWARE DESIGN

CPU 1 Software
Software Organization
Software Modules

CPU 2 Software e ' /)1‘/

Operational Software

Diagnostic Software !

Page

10

11
11
14
14
16
19

26
27
29

31

32
34
35

46
49

—l

M=, iy cepppt

Section

Iv

CONTENTS (concluded)

HARDWARE DESIGN
Edge Signal

Sync and Timing

SYSTEM HARDWARE SPECIFICATION FOR PATS

Video Input

PATS Hardware
Autothreshold Function
Interval Generation
First Level Features
Intensity Data
Computer System 1

CPU 2

Symbol Generation
System Timing
Mechanical

Power

PLANS FOR THE NEXT REPORTING PERIOD

iv

Page

50

50

54

60

61

63

73

(i

78

86

90
92

94

96

96

100

4
.

- a -

——— A

LIST OF ILLUSTRATIONS

Figure
la Plot of Edge Features for Clutter Objects
1b Plot of Edge Features for Targets
2 Clutter Classifier Structure
3 Hierarchical Tree Defining the Grouping of 256
Training Samples for the Fast NN Algorithm
4 Ball overlaps Bounds and Ball within Bounds Tests
5 Bin Classification Software
6 Software Organization for CPU 1 (Bin generation
finds all bins before any classification is done.)
7 Alternate Software Organization for CPU 1 (Bin
generation finds a bin and immediately passes it
to bin classification.)
8 Interval Data Format
9 CPU 1 Software Organization
10 CPU Software
11 Edge and Edge Threshold Hardware Implementation
Block Diagram
12 Absolute Value Circuit
13 Sync and Timing
v

Page

23
24

33

34

35
36
39

47

51
53

55

LIST OF ILLUSTRATIONS (continued)

Figure
14 Vertical Timing
15 Horizontal Scan Line Timing
16 Composite Frame Sync (shown for 525)
17 PATS Functional Units
18 Autothreshold Structure
19 Edge Signal Derivation
20 Adaptive Edge Threshold
21 Adaptive Bright Threshold
22 Background Estimator
23 Background Filter and Switch Rationale
24 Relative Scan Line Timing for Autothreshold
25 Interval Generation
26 Start/Stop Criteria
27 First Level Features
28 Background Feature
29 Intensity Feature
30 Video Field Memory Bit Plane
31 Computer System 1
vi

Page
57
58
59
62
64
66
67
69
70
71
72
74
75
79
81
82
84

87

b il 54 e Lk e S Nl

ad

A

LIST OF ILLUSTRATIONS (concluded)

Figure Page

32 Memory 1 Configuration/Interface 88

33 CPU 2 Configuration 91 L
34 Symbol Generation 93

35 System Synchronizing and Timing 95

36 PATS Physical Configuration 97

37 PATS Physical Layout 98

38 Card Outline 99 {

vii

4 g i s S 2 A, s Y WW“
% At 4% i 14 #

LIST OF TABLES

Table Page
1 Comparison of Moment Feature Types
(Two classes, kNN classifier) 15
2 Results of Feature Subset Selection 17
3 Performance of the Beét Four Moment Set
(kNN classifier) 18
4 Comparison of the Euclidean and City Block
Metrics for the kNN Classifier 20
5 Bin Format 37
6 Edge and Edge Threshold Derivation 68
7 Adaptive Bright Derivation 71
8 Interval Generation 76
9 First Level Features 80
10 Intensity Data--Background 83
11 Intensity Data--A/D and Sum of Intensity 85
12 Intensity Data--Memory 2 85
13 CPU 1 89
14 Symbol Generation 92
15 Sync and Timing 94
viii

SECTION I

INTRODUCTION AND SUMMARY

This is the third quarterly technical progress report for contract
number DAAK70-77-C-0248, Prototype Automatic Target Screener
(PATS). The first two quarterly reports documented the Phase I

design study. This report covers the first part of Phase [I. Phase II

is a seventeen-month effort which includes detailed system uesign,
fabrication, integration, and evaluation and testing. The period covered

by this report is 1 April to 30 June 1978.

The program objective is to produce a design for an automatic target
screener. The screener will reduce the task loading on the thermal
imager operator by detecting and recognizing a limited set of high
priority targets at ranges comparable to or greater than those for an
unassisted observer. A second objective is to provide enhancement
of the video presentation to the operator. The image enhancement
includes (1) automatic gain/brightness control to relieve the operator
of the necessity to continually adjust the display gain and brightness
controls, and (2) DC restoration to eliminate artifacts resulting from

AC coupling of the infrared (IR) detectors.

The image enhancement portion of PATS will consist of circuitry to
operate on the Common Module FLIR (MODFLIR) video output signal.
The circuitry will provide global gain and bias control in the form of

| 488 AL 2.4 L 5
| R it

feedback to the MODFLIR to maintain the signal within the dynamic

range of the electro-optical multiplexer.

Image enhancement will also include local area gain and brightness
control to enhance local variations of contrast and compress the over-
all scene dynamic range to match that of the display. This circuitry
has been completed and examples of its performance on videotaped
thermal image data were included, along with the circuit description, in

the first quarterly report.

The third image enhancement circuit is for DC restoration to eliminate
the streaking associated with loss of line-to-line correlation on the

displayed image because of the AC coupling of the detector channels.

This report consists of five sections. Section II describes the final
results of the classifier design and optimization study. Specifically,
we have improved the clutter rejection classifier by adding a new
feature and reducing the total number of features. Also, we have re-
placed the cascade threshold linear classifier by a k-nearest neighbor
classifier for new scenarios, different sensors, etc. while somewhat
increasing the computations required for recognition. Final recogni-

tion accuracy obtained on the design data set was 78.4 percent.

Section III presents the results of the software design effort. This includes
detailed specifications for each of the software functions required. Sections
IV and V include descriptions of the detailed hardware design effort to date
at the function and systems level, respectively. Section VI describes the

planned effort for the next three-month reporting period.

e x Tt

e — . A— .

R e S S

SECTION II

CLASSIFIER OPTIMIZATION

In the last quarterly progress report we presented the results of a prelim-
inary two-stage classifier for clutter screening and target classification.
Both stages used cascaded threshold classifiers, which were comprised
of a set of linear discriminants designed with the training samples from
the target classes and representative clutter. During this period, we
optimized the clutter rejection and the target recognition classifiers in

the following ways:

1. We improved the clutter rejection classifier by adding a new
feature based on edge and eliminating all but the most essential
remaining features. We made this cascaded threshold classifier
structurally simple in order to make it more robust when used

with independent data sets.

2. We implemented a k-nearest neighbor (kNN) classifier for the
recognition stage. This replaces the cascaded threshold linear

classifier described in the previous report.

The kNN classifier for recognition makes it easy to "train" the classifier
with new data because the training process consists of merely storing the
prototypes. This feature is important when new target classes are added,

for training in situ, and for varying scenarios. The main drawbacks of

this type of classifier have been that it requires expensive distance
calculations and storage of a large number of training samples. Both
drawbacks now appear surmountable with the CPU 1's fast multiplier/

adder.

In this section we present the results of the two new classifiers and compare
their performance with the preliminary classifiers discussed in the previous
report. Implementation of these classifiers in CPU 1 software in PATS is

also discussed.

CLUTTER REJECTION CLASSIFIER

The preliminary clutter rejection classifier, previously described, used
14 features in all and had an involved hierarchical structure of cascaded
thresholds five stages deep. We felt that this classifier could be simpli-
fied by pruning the nonessential and correlated features and reducing the

number of classification steps.

Considering the features one at a time, we examined the scatter of targets

and nontargets. We discarded features which showed no clustering of targets

and nontargets. Several of the features were highly correlated, so we s
discarded features that were correlated with the chosen set. This reduced

the feature set to three features:
1. Average target intensity
2. Average target contrast

3. Total area

In addition, a clutter prescreening stage, which consists of straight thresh-
olds on the target area and the bright count, was implemented to throw

out any pathological clutter. This rejects all targets less than 43 pixels >kin
area and possessing a bright count of less than 750. The bright count is

the number of thresholded (hot/cold) pixels in the object normalized with
respect to the area of the extracted objects. This fraction is multiplied

by a factor of 1000. A bright count of 750, therefore, implies that 75
percent of the extracted object was either below or above the cold or hot
thresholds, respectively. Therefore, small clusters of isolated thresholded

points are rejected by this prescreening stage.

To strengthen the clutter rejection classifier further, we defined two new
features based on edges (not the edge count feature described previously,
which is of little value). These are based on the fact that targets

usually possess edges on both sides whereas most clutter objects extracted
have a significant edge on one side but none on the other. These features
are called the left and right edge features, respectively, and are defined

as follows:

Right (left) edge feature = Number of intervals in the object for
which an edge exists at the right (left)

of the interval/number of intervals.

A set of 40 frames was reprocessed and the above new features were
computed on each extracted object and appended to the previously extracted
features. There were 865 objects present (186 targets and 679 clutter

objects).

*One pixel corresponds approximately to one IFOV for this sensor.

v N s

Figures la and 1b show the scatter plot of the two new features for targets
and clutter objects, respectively. From this we see that thresholds of
approximately 600 on each axis succeed in removing a substantial amount
of clutter with minimal loss of targets. However, a large number of
clutter objects are in the vicinity of the target samples. Nevertheless,
these two features have proved to be good independent clutter rejectors.
Therefore, our refined clutter rejection scheme includes these two

features in addition to the three features mentioned before.

A linear discriminant classifier was attempted using all six features and one
discriminant to separate the two classes (targets, clutter). The results

were unsatisfactory, implying that the target and clutter classes were

not unimodal Gaussian, which is a requirement of the linear discriminant
classifiers. Therefore, a hierarchical classification scheme was developed
using these five features. This classifier retains the simplicity but has a

better clutter rejection performance.

Figure 2 shows the structure of the optimized clutter classifier. It con-
sists of a sequence of cascaded thresholds on the six features: bright
count, left and right edge features, average target intensity, average target
contrast, and target area. No linear discriminant computations (involving
multiplies) are used. This is desirable in a real-time clutter screening
classifier designed to handle a large number of objects. Referring to

Figures la and 1b we see that:

e The easy clutter classification stage removes 378 out of 679
clutter objects. This stage uses the bright count and the total

area.

v R al
i ekl Vo il A

1500 A
THRESHOLD
1250 A 0 0 a
0 0 0
0 A 0
0 0 o
0
" 1000 ¢ 00 000 0 00®0 O 0
2 o o8 ©
. . Y% o K
& 750 3 g g o& %
(4>]
2 0 0.3, 1 Eo o 0
- THRESHOLD 0 _0&__2_r 0
u °1 o , 80 "oe %
see 0. 0 0 g O
5] By
0 6
0 0 0 0,
250 o o 0 5y 0 0 0
()} 0 g 0 9
v 0
e o o—t—a—— ot roo—o—a— +— 1
) 500 1000 1500
250 750 1250
x19 3
RIGHT EDGE FEATURE
Figure la. Plot of Edge Features for Clutter Objects
7
—— v';:r' : ‘/.W«*W

LEFT EDGE FEATURE

1500 -
1250 |
+ ¢ . * ¢
1000 T . ¢+ ne o
W
*t 9
750 - + LA ’3 *
" :
+ - *
e L2
+
Se9 -
+
250 A "
0 g T 1 L L - 1
0 500 1000 1500
2se 750 . 1250
x10 3
RIGHT EDGE FEATURE
Figure 1b. Plot of Edge Features for Targets

ol ik b Al
Aodoke TR WL 3 3 : L e
s v v i

146 | 679
PR S —
| CLUTTER
| PRESCREENER
|
|
]
[}
| CLUTTER
|
[
|
|
]
L
\
T
178
RIGHT EUGE RIGHT EDGE
HOT coLD HOT COLD HOT coLD
Y1z 24 Area
T il AVG
0 v 0 0 0 25/ CONTRAST
Tg T1a 17 T20 23 T26') Avg
INTENSITY
CLUTTER
& T0 RECOGNITION
T P CLASSIFIER
1| 151 | 35
¢ FINAL
¢ | 66 {e13 IS
Figure 2., Clutter Classifier Structure
9
%
L
————c— bt 3,

-

e The right and left edge features partition the data into four
groups, each with a different cascaded threshold classifier.
Each of these four groups is further subdivided into {wo regions

(hot/cold) resulting in a total of eight regions.

e Each of the eight regions has a cascaded threshold classifier
designed for that region. These eight classifiers use thresh-

holds on average intensity, average contrast, and object area.

e The incidence of cold targets is rather low in the data set.
Hence, the classifiers for the cold regions will be retrained
when more cold targets are processed with the PATS

processor.

e The classifier structure is made deliberately simple with simple
thresholds on the features. This enables effective retraining of

the classifier when the sensors are changed.

Computational Considerations

Since the clutter classifier has to process a much larger number of
extracted objects than the recognition classifier, it must be efficient. The
simplicity of the threshold helps here. An object being classified through
the clutter classifier requires merely eight comparisons. This is extremely

efficient in terms of computational load on the processor.

10

N e

KECOGNITION CLASSIFIER

In the previous report1 we presented a preliminary recognition classifier
for two target classes (tanks and APCs). This classifier used cascaded
linear discriminants. Because the k-nearest neighbor classifier appears
to be more attractive for the PATS recognition application, we tested the
approach with training data acquired from the previously processed
images. In this subsection we describe the kNN classifier approach
employed, the feature selection procedure to select the ''best" subset of
features, and the results of classification with the training data. Imple-
mentation considerations include a description of a fast algorithm to

compute the k-nearest neighbors.

The kNN Classifier

Training samples (feature vectors for objects whose real category is

known) and their categories are stored. A new sample vector is classified

as follows. Its distances to all the stored training samples are found, and

its k-nearest neighbors among the training samples are determined. The

new sample is assigned to the class to which the majority of its k neighbors

belong. When the number of classes is two, k is usually chosen odd to

avoid ties.

! Duane Soland, et al,, "PATS Quarterly Progress Report," Contract
No. DAAK70-77-C-0248, Honeywell Systems and Research Center,
Minneapolis, Minnesota, June 15, 1978,

11

el

The advantages of the kNN classifier are as follows:

The classifier is easy to train: we just store the training samples.

When new target classes/scenarios are to be accommodated, we
simply add new training samples representing the new scenario

to the training set.

The classifier is nonparametric: the distributions for each class
need not be linearly separable. In fact, they can possess any
arbitrary shape and can be multimodal. This is attractive
because we can make the ground truth (true classification) aspect
independent in the training process. In fact, we only have to
specify the target class (tank, APC, etc.). Of course we still
have to ensure that all aspects are adequately represented in

the training data.

The disadvantages of the kNN approach are as follows:

Because the process is nonparametric, a large number of training

®
samples is necessary. This number grows very quickly with the
number of features being used.

e Storage of training samples requires N x (n + 1) words of memory
to store N vectors of dimension n, along with the ground truth.

e Computation of the nearest neighbors is expensive. The brute-
force approach requires the calculation of all N distances to
classify the new sample. This requires Nx n multiply-adds/
classification.

12
e e e — S —] . e E——

The drawbacks can be at least partially overcome by:

1. Feature selection to limit the number of features to the minimum

subset that yields acceptable recognition.

2. Using clever techniques to find the nearest neighbors of a new

sample without actually calculating all N distances.

3. The use of high~-speed memory and the 115 nsec multiplier/add
in the PATS processor.

We developed kNN classifier software on the SDS9300 computer to evaluate
the kNN approach. Because of the emphasis on analysis, the software was
designed to be interactive and flexible. For example, the program takes
as input the specific features to be used, the parameter k, and the

training vector tape that contains all the features on all the objects
extracted with the ground truth. The program outputs confusion matrices--
a summary of how samples from each class were assigned by the k-nearest
neighbor vote. When used to measure performances on the training data,
the classifier program does not count the sample being tested as one of its
own neighbors. If it were otherwise, with k = 1, we would get 100 percent
correct classification performance on the training data! In each run made,
the program gives the classification performance with all values of k from
1 to 10. In this way, we monitor the effect of k on the performance and

select the best k for a given feature set.

13

- z © i e Rl arr.. e wg A
— e

E N,

Feature Subset Selection

The objective of this effort was to find the minimum number of features

from the three moment feature sets, each with six usable moments (“11'

Koo H1g% By’ Hog3e u-30). (“'00
are perfectly negatively correlated after normalization. Hence ¥00 and ko2

is used for normalization, and 0o and Y90

are not used.) In these experiments 227 objects (143 tanks and 84 APCs)

were used for data.

Which Moment Type ? --Our first feature selection step was to choose one

family of moments from the intensity-, silhouette-, and boundary-derived
moments. Accordingly, we tested the kNN classifier with the six moments
from each class. In each case, all valuesof k =1, ..., 10 were tried,
and the results with the best value are presented. Table 1 summarizes
these results. The percentage error in Table 1 was computed as the
percent fraction of the total misclassified samples to the total number of
samples. We note that the three moment types are not markedly different
in performance from one another. The boundary moments yielded the
lowest error rate (21, 6 percent), but we chose the intensity moments (at
22.5 percent error rate). Intensity moments tend to be less susceptible
to noise in segmentation than boundary moments because the boundaries

are less heavily weighted.

Optimum Moment Subset Selection

There are six usable intensity moments: Wygs Bygr Bope Boqe Waor ¥o3°
Our next step was to find the minimal subset which gave almost the same

performance as all six moments. We sought to reduce the number of

14

g e s R i AR ¢ A

TABLE 1. COMPARISON OF MOMENT FEATURE TYPES
(Two classes, kNN classifier)

Moment Type Optimum Percent
’ E
(17 #1907 Ba0r 217 Ho3* *30) k e

Intensity 8 22.5
Boundary 7 21.6
Silhouette 7 24.2

features because (1) the smaller the dimensionality of the feature space,
the fewer the training samples we will need for robust classification, (2)
the computation requirements for the kNN classifier increase linearly with
the number of features when the direct nearest neighbor computation is

used, and (3) when using the ''clever' techniques for nearest neighbor

computation, this increase in computation with the number of features is

even more severe, as we will see later.

There are N!/M!(N - M)! unique ways in which we can choose M features
from a collection of N features. This combinatorial is denoted by the
conventional notation (11311 . Thus, (g‘ denotes the number of two feature

subsets that are in the six features:

15

15

(6)= 6! A 6x5x4x3x2x1
2 21(6 ~ 2)! 2x1)x(4x3x2x1)

Similarly,

(3) = 20, (2] = 15, ana [}] = 5

By evaluating the kNN error rates with all subsets of a given size (2, 3, 4, 5),
we found the best subset of size 2, 3, 4, and 5 and the corresponding k (the
number of nearest neighbors used). Table 2 summarizes these results.
Fewer features generally tend to yield higher error rates although the
relationship is by no means strictly monotonic as we can see from Table 2.
From this analysis, we have chosen the best subset of four features (“'11'

Ko2* ¥a1’ "'03) as the features to be used in the recognition classifier. In
fact, these features yield an error rate of 21.6 percent, which is lower
than the error (22.5 percent) with all six features. The confusion matrix

with these four features is given in Table 3.

This results in a total correct classification of 178/227 = ,784, or 78.4
percent, which is somewhat better than the corresponding performance of
75. 3 percent obtained with the CTC classifier reported in the Second
Quarterly Progress Report.

Choice of Distance Measure

In the above kNN classifier, we used the usual Euclidean distance to define
the neighborhood. The Euclidean distance between two n-dimensional

feature vectors X and Y is given by

16

IR SO,

08, £0y 2Ty

My B0 AT,

0

€0y /8Ty

-

ATy .001 Ty

¢l

%9 ‘12

€04

A2y 20, “TT,

(2}

%T "9¢€

Bl (80, Aty

ST

%9 "C€

804.81,

a1q1ssod
sjasqng
aanje
Jo Jaquuiny

13sqns
isad J03 ¥
wrnudO

j1asqng
1sad
UM JOXIT

125qng
aanjeaq
i1sag

w.

(2]

™

19sqnS aanjea, jo azig

NOILDJITHS LASHNS HYNLVHA 40 SLTNSHYH

‘¢ I'19dV.L

17

L R

i,

W

T R B

.

TABLE 3. PERFORMANCE OF THE BEST FOUR MOMENT SET

(kNN classifier)

Assigned Class
Tanks APCs
0
@ | Tanks 112 31
—f
@]
g
66
o APCs 18
n
2
A%, Y) = 2, (x -y
i=1
where
B T
X = (xl.. .xn)
b '
Y et (yi. Oy yn)

This distance measure involves computation of squares, which is a time-

conguming arithmetic multiply step. Other measures such as the "city block"

or "taxi-cab'' distance are easier to compute.

The "city block' distance between sample vectors X and Y is given by

dc(X, Y) =

n

T iz -2

i=1

18

where the sum of absolute differences substitutes for the sum of squared
differences in the Euclidean metric. This metric avoids the multiplies

and is therefore easier to compute.

We computed the kNN error usging the city block distances for the first six
subsets of four features from the six intensity moment features. The
results are shown in Table 4, which shows the confusion matrixes for
each case as well., From these runs, we see that the city block distance
performs almost as well as, but is almost consistently behind, the
Euclidean distance. Timing analysis in the software section shows that,
in the PATS processor, there is very little to be gained by using the city
block distance. This is in part a consequence of the 115 nsec hardware

multiplier/adder used in the PATS processor.

FFast NN Computation

The computer program for nearest neighbor analysis in our simulation uses
the brute force approach to find the nearest neighbors. That is, to find the
nenrest neighbors of a given test sample among a training set of N samples,
wz compute all N distances. Recently, clever schemes for finding the

nearest neighbors without evaluating all N distances have been prOposed.z' .

These algorithms are based on ordering the training sample set in such a

2. Fukunaga and P, M, Narendra, "A Branch and Bound Algorithm for

Computing k-Nearest Neighbors, ' IEEE Transactions on Computers, July
1975,

3J .H. Friedman, et al., '"An Algorithm for Finding Best Matches in Logar-

ithmic Expected Time,' ACM TOMS, Vol. 3, September 1977,

19

TABLE 4. COMPARISON OF THE EUCLIDEAN AND CITY BLOCK
METRICS FOR THE kNN CLASSIFIER

Metric Used
Feature Set Euclidean City Block
Confusion Percent Confusion Percent
Matrix Error Matrix Error
113 30 111 32
F11° Y02 *30° %21 21 63 22.5 22 62 280
119 24 115 28
117 Fog’ F307 H12 32 52 ekt 36 48 28.2
120 23 120 23
¥11° ¥o2 F30’ %03 889 48 e 34 50 49. 1
119 24 108 35
K117 Hog’ Boq2 Hyg 31 5% e 21 63 B
119 31 110 33
®11° %024 ¥21* Y03 18 66 19 65
114 29 114 29
K112 P02’ F1a7 ¥o3 30 54 R0 31 53 26.4

way that we do not have to consider all samples when finding the nearest
neighbors. Thus, there is some overhead in the initial preprocessing of
the training samples. But this needs to be done only once for a given set
of training data. The utility of these algorithms for PATS depends on
several congiderations. A characteristic of these algorithms is that their
relative efficiency increases with the number of training samples and

decreases rapidly with the dimensionality, the number of features used.

20

o R o o
3

B oL

P T

This was one of the reasons why we reduced the feature subset to the

smallest size possible without sacrificing recognition performance.

Both Friedman's algorithm and the Fukunaga-Narendra algorithm are very
similar in performance and principle. But Friedman's paper containg
exhaustive simulation results which let us predict with reasonable accuracy
the computational effort involved in implementing the approach in the PATS
processor. Therefore, we are implementing Friedman's scheme in the

PATS processor.

A preliminary analysis of nearest neighbor to computation requirements
was made for the PATS processor. A four-feature Euclidean distance
computation requires 3 psec, Assuming 1000 training samples, the
classification of one object requires 3 msec when the brute force technique
is used, ignoring overhead. For 10 objects, this is 30 mgec. But all
other functions in the processor-object extraction, moment computation,
etc., take up a total of 28 msec (see Section V). In this light, the 30 msec
requirement for the nearest neighbor computations seems to be excessive
although the total processing time (68 msec) would still be under the 100
msec limit allowed when overhead is ignored. With 100 percent overhead,

we would be overloading the processor,

Using the fast NN algorithm, we can reduce the number of distance compu-
tations down to 100 even when the training set contains 1000 samples. This
implies a saving of a factor of 10 and is well worth pursuing. Therefore,
10 objects can be classified in 3 msec. Even with 100 percent overhead,

this is 6 msec.

21

Another feature of these algorithms is that the computation is almost inde-
pendent of the number of training samples. A training set of 2000 samples,
for instance, would require the same number of distance computations (100)
but perhaps a little more overhead. Therefore, if occasion demands, we
can accommodate a number of migsion gscenarios in the same training set

by expanding its size,

The Fast NN Algorithm--We will give a brief description of Friedman's

algorithm here. The training samples are first preprocessed, which
congists of dividing them into successively smaller subgroups. The
hierarchic subdivision is represgented as a binary tree structure. Figure 3
shows such a tree for 256 samples. Each group is successively divided
into two subgroups of equal size, until the terminal stage. There are 16
groups with 16 samples each at the terminal stage. Each group is divided
by choosing the axis (feature) with the largest variance or spread and
splitting the axis at the median of the distribution of the sample on that
axis. This tree and associated bounds are stored in a simple data

structure. This completes the preprocessing step.

When a new sample vector needs to be classified, we have to find its k-
nearest neighbors from the training set. Starting from the top of the tree,
each group i8 examined to see if the group might contain the nearest neigh-
bors of the new sample. The efficiency of the algorithm lies in detecting
groups that cannot contain the neighbor of a point. We can then eliminate
them from the search. This test to assure that a group of samples at any
level of the tree cannot contain the k-nearest neighbors ie called the "ball

overlaps bound'' test. Figure 4 illustrates this test with a two-dimensional

22

w3 1I03Ty
NN 3seq 3y} 103 sajdureg SuiureaJ, 9¢g jo
Suidnoan ayj Suruiga@ aaa], [eoIydIeIaly ‘g dandig

S13xXNng
TUNIWH3L
v 13A37 9T 91 91 9§91 BT 9T 9% 9L 91 91 9 S S 9

L L

RENER! %] 2 T gk
Z 13A31 ¥9 - 9
1 13AN 821 821 h
o 13A3T S37dWYS 9S¢ _
|

example (two features: 1 and 2). The rectangle shows the bounds along
dimensions 1 and 2 of all the samples contained in a given group. X is the
, X_, and X, show some possible positions for X rela-

2" 3 4
tive to the bounds). Let us assume that the kth nearest neighbor found so

new sample (Xl' X
far in the search is at a distance r from X. The test is to see if any
samples within the rectangular area could be closer to X than the kth
nearest neighbor found so far. If this test fails, then we do not have to
compute the distances between X and all the samples within the bounds.
This test is equivalent to seeing if the hypersphere (ball) of radius r over-
laps the bounds. In Figure 3, X, and X_ are outside the bounds, whereas

1 2

it is possible for X_ to have a nearer neighbor found within the bounds than

3
the nearest neighbor found so far. This test is relatively inexpensive and

requires at most N comparisons (N is number of features) and N squaring

operations.
24

EOUNDS

v

X1 and Xy = ball does not overlap bounds
X3 - ball overlaps bounds

o
Figure 4. Ball overlaps Bounds and Ball within Bounds Tests

- ball completely within bounds

24

pre

If the ''ball" is completely within bounds as shown by X,, then the nearest

4

neighbor of X, has to be in this group and this group only. Therefore, if

4
this test is satisfied for any group, we terminate the search, and the
current k-nearest neighbor list contains the nearest neighbors we want.

If the ball overlaps the bounds (as with X, in Figure 3), then we descend

3
down the tree and test one of the nodes under the current node. When a
terminal node is encountered, we find the distances from X to all the
members (16) of that terminal node and update the list of nearest neighbors

and their distances.

The preprocessing--building the tree and the bounds for each node--will be
done off line in the ""training process.' The tree and the training samples
will be stored in the PATS memory. The storage required (in excess of
the storage required for the training samples themselves) is not very
significant. For 1024 samples, 16 samples/terminal bucket, we have 64
terminal nodes. This results in a binary tree with 64 + 32+ 16 + 8 +4 + 2 +1 =
127 nodes. Each node stores 2 x N bounds (defining the rectangular area
in Figure 3) where N is the number of features. With four features, the
storage associated with the tree becomes 4 x 2 x 127 = 1016 words. It is
also necessary to identify the sample vectors that belong to each terminal
bucket, This requires 64 x 16 = 1024 words of memory. Hence the total
storage associated with the algorithm will be 1016 + 1024 = 2040 words.
Storing the samples themselves requires another 4 x 1024 = 4096 words

of storage and 1024 words for the ground truth.
A detailed analysis of the algorithm steps will be made in the next reporting

period prior to coding the microinstructions. At this time we feel that the

fast NN algorithm is simple enough to be implemented in the PATS processor.

25

INTERFRAME ANALYSIS

The outputs of the clutter rejection and recognition classifiers are a set
of symbols and coordinates representing decisions on all extracted objects
in a frame. Preceding and succeeding frames will have similar symbolic
representations of the decisions for those frames. After registration and
correlation of each symbol to a symbol on the previous frame, the result
will be a variable length string of symbols representing a sequence of de-

cisions on a given extracted object. For example, the symbol string
TTACTT

for a sequence of seven frames may represent a decision sequence where
T = "tank," A = "APC," C = "clutter, " and a blank represents a miss

(object not detected).

The decision displayed to the operator will be more reliable if it is based
on the multi-frame decision sequence than if it is for a single frame. The
question, then, is how to process the information represented by the symbol

string to provide the best decision.

One approach would be to store the feature vectors for each of the extracted
objects over a sequence of frames and compute a "smoothed' feature vector
for each frame. The smoothed features would then be used to compute a
more reliable decision for each frame. However, this approach would
require excessive memory and computation, would not necesgarily provide
a more reliable decision, and would not resolve the problem of ambiguities
resulting from different decisions on successive frames for the same

object.

26

An alternate approach, and the recommended one, is based on Bayes'

theorem.

Decision Smoothing by Bayes' Theorem

Let A, represent the true event "tank, " A, represent "APC, " etc. The
corresponding decisions will be the events T, A, etc. By Bayes' theorem,
the posteriori probability of the presence of a tank, given the decision "T,"

is given by
P(T/AI)P(AI)

P(T)

P(A1/T) =

where P(Al) is the a priori probability of the presence of a tank and P(T/Al)
is the conditional propability that the target screener will correctly label

the tank.

Similarly,
P(A2 /T)P(A2)
P(A,/T) =

P(T)

is the probability that the object labeled "T'" is actually an APC, where
again P(Az) is the a priori probability that an APC is present and P(T/Az)
is the probability that the target screener will incorrectly label the APC

as a "T."

The conditional probabilities P(T/Al). P(T /A2). etc., are the entries in the
confusion matrix resulting from the classifier training. The priori proba-
bilities P(Al)' P(Az). etc. are determined by the engagement scenario and

can be entered by the commander in the field.

21

e Sy, Ay B U R s
Al B2 i BRI o e . £h

bse

We can write the probability P(T) in terms of these known quantities:
P(T) = P(T/A)P(A,) + P(T/A,)P(A,) +. . . + P(T/AP(AL)

where N is the number of classes for which the classifier is designed.

The approach to decision smoothing is to apply Bayes' theorem recursively
to each decision in a string. Thus, the a posteriori probability of a given
target class in one frame becomes the priori probability for that class in

the next. A simple example will illustrate the approach.

Suppose we have a two-class target screener with the possible events being

A, = "tank'" and A, = "not tank.' Further suppose that the probability of

1 2
correctly labeling a tank is P(T/Al) = 3/4. Then the probability of a false
alarm is P(T /Az) = 1/4. Also, let the a priori probability of a tank presence
be 1/4. Then we would compute the following sequence of a posteriori

probabilities for ‘a string of decisions TTTT:

FRAME NUMBER POSTERIORI PROBABILITY

1 P (tank/T) = 3/4°1/4

5Taifasiaa7a - 112

2 P (tank/TT) = 3/4:1/2 - 3/4
3/4-1/2+1/4-1/2

3 P (tank/TTT) = 3/4-3/4 =9/10
3/4.374+174-174
p P(tank/TTTT) = 3/4°9/10 =27/28

374.974+174-1710

28

T o e —————

Note in this example that the string of correct decisions increases the
probability monotonically of the correct decision being displayed. In general,
if incorrect decisions are interspersed in a string of correct ones, the
sequence may not be monotonic and it will take a larger number of frames

to achieve a given confidence level. A low priori target probability will

also require a longer sequence of correct decisions to achieve a given con-

fidence level.

The advantages of this approach are as follows:
1. It is computationally simple and storage requirements are minimal.,
2. It optimally uses the available information.

3. Target screener performance can be tuned to the operational
scenario in the field by specifying the a priori probability of

encountering each target class.

4. The decision can be displayed with a specified confidence level
by thresholding the a posteriori probabilities.

Priority Target Mode

The Bayes' a posteriori probability approach provides a means of imple-
menting the priority target mode of operation, where two of the five target
classes are of much greater interest and the false alarm rate must be
significantly lower. As noted above, two ways in which this can be accom-
plished are by specification of a priori target probabilities and by
specification of decision display confidence thresholds. A third modification

is simply to relabel the stored training samples in the nearest neighbor

29

: *
g R :

classifier so that all non-priority targets are, in effect, treated as clutter.
This relabeling will change the confusion matrix and consequently the
conditional probabilities used in Bayes' theorem. Training data are not

yet available for the priority target classes so this concept cannot be

evaluated.

30

o’

SECTION III

SOFTWARE DESIGN

The PATS implementation software has been summarized in a previous
report.1 What follows is a presentation of essentially the same information
with some additions and organizational modifications. The software
descriptions are given in a modular input/function/output format and tend

to emphasize the data structures used by the PATS algorithms.

The major difference between this and the previous report is the addition
of the k-nearest neighbor recognition classifier. This classifier is dis-
cussed in detail in Section II, and some details relevant to its implemen-

tation are covered here.

PATS software functions, as before, are partitioned between two proces-
sors, CPU 1 and CPU 2. CPU 1 is a high speed, purely microprogrammable
processor of special design which bears most of the PATS real-time compu-
tational load, whereas CPU 2 is an off-the-ghelf, medium speed, mini or
microcomputer whose principal function is to interface the PATS system

to external peripherals of standard design (i.e., mag tape, floppy disks,
etc.). Functional descriptions of the various software modules making up
both processors are given below, with emphasis on module interplay and

data structure manipulation.

31

s w3

s

CPU 1 SOFTWARE

The software for CPU 1 can be broken down into two categories: bin
generation and bin classification. Bin generation segments the FLIR
image into two-dimensional objects by matching intervals from adjacent
scan lines. Bin classification processes each of these objezts and deter-
mines whether it is target or clutter; if it is a target, it outputs its type,
size, and location to CPU 2 for symbol generation and the interframe

analysis.

The various modules making up bin classification are shown in Figure 5.
Each module processes a single bin at a time and passes it on to the
succeeding module. Each of these modules is described later in this

section.

CPU 1 accesses three memories in the course of its computations.

Memory 1 buffers interval data from the interval generation hardware and
is used by CPU 1 to develop the object bins. It is also used as a scratch
pad in computing object features. Memory 1 is very fast (under 200 nsec
access) in order to match the processing speed of CPU 1 and because CPU 1
accesses it quite heavily. Memory 2 stores a digitized video field for the
purpose of computing intensity moments. It is slower than Memory 1 since
it is not accessed very heavily, CPU 1 only reads from Memory 2; it
never writes into it. A third programmable read-only memory (PROM)

will store the prototypes for the k-nearest neighbor recognition classifier.

32

§ O ——

W IR e

aIem}jog uo1IedIISSBID Wid ¢ 3anSid
J¥NG3J0¥d ONITTWI
01 Nyni3y
S3A
¥3L14 S3UNLY34 . .
NIGI | g pevn 1. anasen | BIDETIRE DS -
31NdWOD NOILINDOIY 1399V1
P
NOILJ303Y ¥3LLNTD NOILJ3C3Y¥ ¥ILLNTD
= NOT12303Y WIWILdO ¥04 NOILD3C3Y¥ AYWNIWI3¥d | viva
¥3LLNTD S3UNLY3 4 ¥iL1n10 [*—] wo0s Swnuvas [
WK1 1dO 31NdW0D AYVNIWI T38d 31NdW0D
S3A
3¥N03708d ONITIWD
01 NYNL3Y
R
JES

PP N

w

—p BIN

Software Organization

Two alternative organizations are being considered. The first is shown in
Figure 6. In this scheme, bin generation processes the entire FLIR image,
creates all possible bins, and then passes them to bin classification where
they are processed one at a time. The chief advantage to this organization
is that it preserves modularity which allows easgy insertion of additional
modules between bin generation and bin classification. Object data would
be available to such a module (e.g., bin merging) on a global (i.e., frame-

wide) scale.

In the second approach, bin clagsification performs for each bin immediately
after it is found by bin generation (Figure 7). An advantage of this approach
is that, since a bin is processed immediately after it is found, its memory
area can be released and reused by CPU 1 to hold another bin. This would

allow more efficient use of Memory 1.

ALL BINS

GET A
CLASSIFIED . BIN

BIN CLASSIFICATION

GENERAT ION

NO TARGET?

REPORT TYPE,
SIZE, LOCATION |eg—
T0 CPU 2

Figure 6. Software Organization for CPU 1 (Bin generation
finds all bins before any classification is done.)

P —

34

Rt e ek » i

YES REPORT TYPE,
BIN | SIZE, LOCATION
CLASSIFICATION TO CPU 2

CONTINUE WITH
INTERVAL MATCHING

Figure 7. Alternate Software Organization for CPU 1 (Bin
generation finds a bin and immediately passes it
to bin classification.)

It is likely that the second alternative will be chosen for the implementation
because of the memory savings. However, a switch from the second to the

first alternative would not be difficult to accomplish.

Software Modules

Bin Generation--~

Input: Interval data are dumped to the upper 8 K words of Memory 1

in the format shown in Figure 8.

{ § 35

e
i 28

l¢————— 10 BITS)@ 6 BITS —»]
—» ! f'—- 6 BITS
LINE NUMBER NUMBER OF
f INTERVALS
H/c STARTING X WIDTH
FIRST
INTERVAL ¢ z 1 B
LEFT/
RIGHT UNUSED BRIGHT COUNT
L FDGE
v W—J
2
[]
[]
NL’ :
T L
7
H/C STARTING X WIDTH
LAST
INTERVAL Il]
CEFT/
RIGHT UNUSED BRIGHT COUNT
 [EneE
S
2

Figure 8. Interval Data Format

36

R e

T

’ v “ Yy L
T i . ! v, L L o

Output: Data blocks in Memory 1, each containing interval data, are
reorganized into a two-dimensional object or bin. These data blocks

have fixed lengths; their format is shown in Table 5.

TABLE 5. BIN FORMAT

Word Contents
r
1 Address link to next bin
2 Midpoint (from last interval in bin)
3 Starting X
< 4 X + width
BookREeHiig 5 Bin color (H/C)
6 Line number on which bin starts
7 Total scan count (N)
L 8 Active scan count
9 X
First interval 10 Width
in bin 4
1 Packed features
le
4N + 5 X
L.ast interval 4N + 6 Width
in bin 4N + 17
AN + 8} Packed features
4N + 9
Object features (target contrast,
moments, etc.)
160

37

Function: Bin generation (or "bin matching, " as it was called in
Reference 1) segments the FLIR frame into two-dimensional objects.
The concept has been discussed in References 4 and 1. Reference 1

summarizes the implementation.

Figure 9 expands upon the second alternate approach to CPU 1 software
organization by highlighting the principal functions of bin generation. Note
that two lists of unclosed bins will be maintained: one for hot bins and one
for cold bins. This will eliminate hot/cold indicator comparisons between
bins and intervals. A list of the locations of available bin areas in Memory
1 will also be maintained. Such a '"free list" is necessary because bins
close randomly with respect to one another, and we would like to be able

to easily find bin memory areas which can be reused.

The hot and cold bin lists will be maintained as linked lists in ascending
order according to the value of the midpoint of the last interval associated
with each bin. Bin generation will first try to establish overlap between

a bin and interval and, once overlap is established, will check for midpoint
correspondence. A subsequent PATS quarterly report will contain a

detailed description of the bin matching algorithm being implemented.

Preliminary Clutter Screening and Clutter Feature Computations--

Input: Object bins in Memory 1 that are produced by interval matching.

4’D. E. Soland, '""PATS Quarterly Progress Report, ' Contract No. DAAK70-

77-C-0248, Honeywell Systems and Research Center, Minneapolis,
Minnegota, January 15, 1978,

38

ey

uoiyeziuedaQ axemjjosS [NdD ‘6 sansig
X018 N
TVAY3LNI
1SV SNTE
3103 101703 40 ISIT
LISNIVIY VA > “IWV¥4 1X3N
=43INI HOLWW 404 1IVM
%2018 ; o
—{ V1VO WA¥IINI NI g »
TYAYILINI ITONIS 10H "NOILWIIJISSYVT) %
WOY3 ViVQ XJVdNN NIS HONO¥HL m
W3H1 SS320¥d

“SNIg ONY SNIS N340 ONI
LOH 40 1SIT -NIVW3Y 1TV 35070}
: ' LSNIVOY WA [
11 3384 31 -¥3INI HOLVW
0L GIN¥NLIY ONV
NOILVII4ISSYT)

NI8 A8 (03SS3204d
_Jdv SNIS 43S01)
“SNIS 0102 SNVIS Q3SSIW NI

“YIBWNON
INIT AIVdNN

¢03SS3204d

40 1SIT 3HL ¥O04
4311V7 IHL 1V3d3y

1114 ONV SONISOTD
NIg ¥04 SNIg
10H 40 1SIT NI3HI

32078 vY1iva
LX3N SS3JJv

SXJ079 viva
TVYAY3INI
1w

R A

Output: Object bins with markings indicating whether a given bin is
active or inactive; active bins contain new features for clutter

rejection.

Function: Object features are computed for the purpose of clutter
rejection. These features are computationally inexpensive and only
involve accesses to Memory 1 (i.e., they do not require individual

pixel intensities).

For a given bin, initially the following two features are computed:
e Total bright count
e Total width (area)

These features are immediately thresholded after computation, and bins

not satisfying the thresholds are immediately rejected as clutter and
marked as inactive. This first stage of clutter rejection is followed by an
additional, optirpized clutter classifier which uses some additional features.

The features currently used by this classifier are:
e Area
e Total number of occurrences of left and right edges
e Average intensity
e Average contrast = |average intensity-average backgroundl

These features are only computed for bins which pass preliminary clutter

screening and, once computed, are stored within the bin areas in Memory 1.

40

O — - “m;,”. o T gl ————

Optimized Clutter Classifier--

Input: Object bins in Memory 1 that remain active after preliminary
clutter screening. Features are read from each bin as input to the

classifier.

Output: Object bins with markings which indicate whether a given bin

is active or inactive.
Function: Each bin which passes preliminary clutter screening is
processed by the optimum clutter classifier. Bins rejected by this

classifier are marked as inactive and are no longer accessed.

The clutter classifier is tree-structured and involves thresholding on the

features. The classifier structure is discussed in Sectionll,

Median Filter--

Input: Object bins which have passed the optimum clutter classifier.

Output: Object bins with modified starting X values and widths.

Functions: Clutter rejection does not use object shape. However, bins
which are not rejected as clutter are then processed by the recognition
clagsifier which uses intensity moment features. Intensity moments

depend upon object shape, and the median filter smooths the boundaries

of a bin using a one-dirnensional median filter of width three.

41

The inputs to the filter are the endpoints of the intervals making up each

bin.

A separate filtering operation is done on the left-hand and right-hand

edges of each object. Each triplet of endpoints on a given edge is sorted,

and the middle endpoint of the triplet is assigned the middle value from

the sort. Note, however, that this filter is nonrecursive; only original

endpoints are input to the filter, not filtered ones. All the intervals within

each bin will be processed and, where necessary, starting X values and

widths will be updated.

Moment Feature Computations--

Input: Median filtered object bins in Memory 1 which remain active
after processing by both preliminary clutter screening and the opti-

mized clutter classifier.
Output: Active object bins, each with four additional moment features.

Function: The intensity moment features Hiqs p'02’ “20' o1’ and u03
are computed for the remaining active bins. Their definitions appear
in a previous report.4 Once computed, these features are stored in

the bin areas.

Recognition Classifier--

Input: Object bins in Memory 1 remaining active after processing by
the clutter classifier, Moment features are read from these bins as

input to the recognition classifier,

42

G X8 vy
bl N T $ AL ¥

Output: Object classifications, together with object sizes and locations.

These data are stored in an area of Memory 1 for direct memory access

(DMA) transfer to CPU 2.

Function: The recognition classifier puts each active object bin into
one of five target categories using only the moment features for that
object and stores that classification in Memory 1 together with the
object size and location (location information is derived from data in
the bin). After all bins have been processed by this classifier, CPU 2

is interrupted by CPU 1 and all the classification information is trans-

ferred to CPU 2 memory via DMA. Processing then transfers to CPU 2.

Current plans have CPU 1 idle during the remainder of its 0.1 second
processing frame, but this will probably change after a detailed timing

analysis of the PATS implementation software is complete.

The recognition classifier is of the k-nearest neighbor variety and is
described in detail in Section II . Timing considerations for this classifier
are alsc discussed there, and the issue of Euclidean versus city block
metrics is raised. It turns out that, for the PATS implementation, the :
Euclidean metric can be calculated just as quickly as the city block metric
owing to the presence of the fast (115 nsec) multiplier/accumulator, The

microcode for computing the squared Euclidean distance

4
2= < 2
dpX,Y) = L (x -y)

i=1

between two four-tuples X = (xl.xz. xa,x4) and Y = (yl,yz.y3, y4) will be

similar to the following:

43

i
h.
§
I sy S — v ————RTh T i

i P e i §
oo g G % 4 R 0

-~

Instruction

10

11

12

13

14

15

Number

Function

Clear accumulator register in multiplier.

Fetch Xy from Memory 1; put in R1 (R1 = register 1
on 2903 ALU).

Fetch y1 from Memory 1; form R1 - Yy store

result in R2 and in Y latch on multiplier/accumulator,

Store R2 in X latch on multiplier.

Enable multiply/accumulate function. Fetch X,

from Memory 1; put in R1.

Fetch Yo from Memory 1; form Rl - Yoi store

result in R2 and in Y latch on multiplier/accumulator.

Store R2 in X latch on multiplier.

Repeat instructions 5, 6, 7 for x_ and Yge

3

Repeat instructions 5, 6, 7 for X, and Yy
Enable multiply/accumulate function.

Fetch final result from accumulator register on

multiplier.

15 instructions x 200 nsec/instruction = 3 usec/distance calculation

44

. T p—— 1

e

wome o el S

On the other hand, the microcode for computing the city block distance

4
dC(X,Y) = Z lxl -y I
i=1
J
would be as follows:
Instruction :
Numbei Function ‘i
1 Clear R2 in 2903 ALU. 1
2 Fetch Xy from Memory 1 and store in R1. i
3 Fetch Y4 from Memory 1; form R1 - Yy store result g
in R1.
4 If R1 > 0, go to instruction 6.
5 Negate R1.
6 R2 ~ R2 + R1
. 1
g Repeat instructions 2, 3, 4, 5, 6 for X, and yz.
10
11
W
12
13 :
14 ? Repeat instructions 2, 3, 4, 5, 6 for Xg and Yg
15
16 J
1%
18
19 Repeat instructions 2, 3, 4, 5, 6 forx_ and y,.
20 4 4
21

21 instructions x 200 nsec/instruction = 4, 2 usec/distance calculation

45

Thus, because of the multiplier/accumulator, Euclidean distance

calculations are roughly 1 usec faster than city block calculations.

The prototypes for the k-nearest neighbor classifier will be stored in fast
4 K x 16-bit PROMs (allowing 1000 prototypes, four features per prototype,
and one 16-bit word per feature). This PROM will be in the CPU 1 address

space along with Memory 1.

CPU 2 SOFTWARE

The definitions of the CPU 2 software modules have not changed since the
previous quarterly report. This software is diagrammed in Figure 10 and

summarized in this section.

The software 1s divided into operational and diagnostic sections. The
operational software is used both when the PATS system is running normally
and when it is being tested or trained. The diagnostic software, however,

is used only when the system is being tested or trained.

Operational Software

Interframe Analysis--

Input: Object clagsifications and locations in Memory 1 produced by

CPU 1 from a single frame of data.

Output: A cumulative classification for each object based on the

interframe analysis.

46

aremyos g NdD ‘0T dandiyg

W AN e

4 _

NOILYJIJISSVT)

JATLVINWND

:

Z ndd 1 ndd
ﬂ.lll.%.&mhﬁ.ﬂ&ﬂgﬂ'l'_ B i 0 <2
|
_ | _
SAWN |- | }
3¥N1LY34 SLVAS | |
_ | _
_ _ _
o _ —+ > 2 AvoWamW
e m S3aNLv3d LG | >5Hmzwhzh_
Add014 »| Vlva 1831 : i
_ viva 1531 VIVQ WAY3INI | l
_ |
f
030IA | JUYML0S IYNOILY¥IdO |
oI
|
|

><4«u>o_

NOILVYINID
T09WAS

JOLINOW

NOILVJ01

SISATYNY
F371s 1930go|3WVH¥ILNI

— c— Sw— —— —

NOI1VJ01 *3ZIS

‘3dAl 123080

T AYOW3IW

| e ——

ha:mmmth_

47

S—

=g

o A

Function: Object data are passed to CPU 2 via direct memory access
Lf from Memory 1 and stored in CPU 2's memory. These object data
start at a fixed location in Memory 1. CPU 2 is interrupted from
CPU 1, and then data for a single object are transferred from Memory
1 to CPU 2. While CPU 2 is processing these data, CPU 1 will con-
tinue with its own processing and generate more object data. Inter-
frame analysis adjusts the clagsification of an object from successive
single frame classifications. The result is a cumulative object

classification.

Symbol Generation--

Input: Cumulative object classifications, their sizes, and their

locations within the current frame.

Output: Graphics overlay on FLIR video output highlighting object

locations and classifications.

Function: Object classifications produced by interframe analysis
together with object sizes and locations are used to generate a display
in a 256 x 256 dot graphics memory. Possibilities include drawing

a box around the detected target and appending a symbol which indicates
T the target's class.

L

Diaggostic Software

Test Data Generation--This module will load test data into Memory 1 and/or

Memory 2 in CPU 1 for the purpose of testing the implemented PATS algor-
ithms on known data. The test data will be generated either internally or

will be loaded from tape or floppy disk.

Feature Dumps--This software will interact with CPU 1 to accomplish

dumps of interval and object features from Memory 1 onto tape, floppy
disk, line printer, or CRT. These dumps will be used to check out CPU 1
software and to do off-line classifier training. This software will also

dump information to help check out the CPU 2 operational software.

49

e : { 'Wi-i""i’“:' e 3N G % ¥ e ATRBL v §

| SR Hi)

SECTION IV

HARDWARE DESIGN

The PATS hardware design tasks have been broken down into the following
subparts:

. Memory 2 (intensity information)

CPU 2

1. Image enhancement
2. Edge signal

3. Bright signal Symbol generation

© O g9 o

4, Interval generation . Sync and timing

6, CPU1

The functions and requirements of items two through nine are covered in

the hardware specification. Item one has been covered in a previous report.

This section discusses those designs which are nearly complete and being
submitted for build. For each part a detailed block diagram is presented
along with a discussion of how the circuit works and major parts used in

the design. Specific values of components are not provided for resistors

and capacitors.

EDGE SIGNAL

The edge signal derivation is shown in Figure 11. The video output from
the FLIR or from the image enhancement is used for the video input. The

edge operator is two-dimensional in that it uses three scan lines of data
for determining an edge. The video data are delayed by two one-line delay

50

Eahwm_a Joord GOZ&..—GNEQ—QEH 3IBMpPJIBH pPIoysaayl], Uwﬁm_” pue anvm” ‘Il Q.NPM_.....H
L 1y 310wYS
Y IS EERET N E
2 20w 395" 2¢ - 3%y B
EREULN ause £o = ol 8287528
30 = T 270H WY % GV 3
T Ruwig | Y0LdvdRD /37dWYS WS d 2 HILINS 1 HILIMS e
/_ 4 . 30
: Ty 3LN0SEY
= 4
HILINS
|
¥IN —
wn
z WY
_ REIQIE]
A ssvd Mo o
1
P 235N 005 0L 0 = — T
ilg Y AVTI0 — SYIATNC 1 & 1]
= Y3114 i ~ gﬂr?
T3adsl mwa“ w1 -ﬂ ONV AVT3Q NV AVT3C o
& INDT TWINOZINOK b INIT TWANOZIWOH T
q3LV0 5S¢
|
|
i L i s - AR TR o I J

lines. These delays consist of a Fairchild CCD321A3 delay line and the
associated clock driver circuitry. Each of the delay lines is followed by
a unity gain buffer amplifier which drives a low impedance, low pass filter,

This low pass filter is used to reduce the clock noise present on the output

of the CCD. The CCD is operated in a multiplexed mode giving 910 samples/

line.

The three lines are summed together with a 318 operational amplifier (op
amp). The 318 has a 15 MHz small signal bandwidth and a 50 V/usec slew
rate. To create an analog edge signal, the output of the 318 is delayed a
few pixels; then the signal and a delayed version are subtracted in the
differencing amplifier (dif amp) to give a signal that goes positive for rising
edges and negative for falling edges. In the PATS hardware, we do not
distinguish between rising and falling edges but we are concerned with
where the edges are located relative to an object. Hence, the absolute
value of the difference signal is taken. A specific implementation of the
absolute value is shown in Figure 12. This absolute value circuit is used
in several places in PATS. It consists of two LH 0024 op amps which have
high bandwidth and fast slew rate and two Hewlett-Packard Schottky barrier
diodes. These diodes are chosen for their fast switching and low turn-on

voltage.

The primary concern in estimating the absolute values is uniformity. That
is, a dc offset can cause one edge of equal rising and falling edges to end up
slightly larger than the other., Adjustments during the checkout phase will

eliminate any dc offsets.

52

_abhe

p oA

— L4 . aae T

NN2I1) IN[BA dIN[osqQy g1 Indig

.W q1-
2-dW0d '8 .
£-dW0/ W8 °S 10

1-dW02/v8 1
Judd43d T = S403SLSaJ ||Y

+

€
$200H1
- m w
».mﬁu = 2
10 o .W
4d g1 10°
4d g1+ ST+
1
Dbt
A ev'y
0082-280SdH 0082-2805dH
b R4 Al
VAN : VAYAVAVA
A 1272 P4 AN
VAN

R &

53

The thresholds for the edge signal are determined by integrating over each
line to get the average value during each scan line. During the blanking or
retrace time, switch 1 (Figure 11) is connected to the grounded input. In
this way the integrator does not have any input and hence will not change
during the time its output is being sampled. Switch 2 switches in either R1
or R2 depending upon whether the video input to the system is 875 lines or
525 lines per frame. Switch 3 clears the integrator to zero during the

retrace time before the next line starts.

The output of the integrator feeds the threshold determination. Sample/
hold (S/H) 1 is sampled immediately at the end of a horizontal line. Then
shortly after the completion of sampling S/H 1, the sampling of S/H 2 is
initiated. S/H 1 samples the sum of the integrator and S/H 2. This pro-
vides a recursive filter determination of the edge threshold. The output
of S/H 1 feeds a comparator. The edge value from the absolute value is
compared to the threshold. When the edge signal exceeds the threshold,

then a logical signal is generated.

SYNC AND TIMING

The second circuit that has been designed and is ready for build is the sync
and timing section. The sync and timing circuitry must strip video sync out
of the incoming video and then generate appropriate logic signals to be
agsociated with specific time slots within the video. The sync and timing
block diagram is shown in Figure 13.

The output of the sync separator is a logic signal that contains the composite
sync (CSYNCD). It is slightly delayed relative to the incoming video. The

composite sync signal feeds both a horizontal and a vertical reset logic

54

G

S

e = = o TE— -
. At e SRR)
Sururl J, pue dukg °g1 =2andig
S/0
27anSH N39 3S70d [T ®
S/0
S *N39 3570d
$/0
e N39 35704
525 ¥04
$/0 ¥207) Sb 3
IN1703 N33 3570d HOLIMS :
/2
$/8 ¥0i
¥J07) SS¥ “
10 5S¢ - 1 ,w@
———— 9NILV 2 SY3INNOD Y
Ll L 55t9 WINOZINOH | = Ceh 2t %
HOLIMS ;-
YT 215
| 528 ¥04
¥201 21§
. ONI LY INAS H 01 ¢
A1) els Q31V 03 H
i sl B2
IATNA M
N8 H ;
1 S¥3IINNOD WWMWM 1SnCQY
/8 TVINOZI¥OH " A¥13Q I
%207 2/H ¥ L IANOZLQH
JALN 1907 13§
JAT¥QA Ame» 3Lv¥ INIT
0B | 51901 e !
IATNOA 37507
INIEWOD S¥IINNOD ¥0LVHV43S
W18 e WIILYIA e S was [o3
IG
MAS)

section. The reset logic sets the respective counters to zero at the start

of a frame or at the start of the line.

The number of counts for both the horizontal and vertical timing is deter-
mined by the line rate set logic. The line rate set logic is implemented by
a PROM which contains data for both 875 and 525 line systems. The master
clock for the counters is the 512 clock. This continuous clock frequency
contains 512 clock pulses per active horizontal line time, resulting in

512 addresses per horizontal line,

A second horizontal counter counts 455 clock pulses per horizontal line
time. The 455 clock is required for the Fairchild 321A CCD line delays

used in the image enhancement, edge filter, and background filter.

The outputs from the vertical counter are five logic signals associated with
the vertical format of the data. These vertical timer signals are shown in
Figure 14, These signals are vertical blanking (VBLNK), vertical equali-
zation gate (VEQU), vertical serration gate (VSER), vertical drive (VDRIVE),
and index. The outputs from the horizontal counter are shown in Figure 15.
These signals are horizontal blanking (HBLNK), horizontal drive (HDRIVE),
horizontal equalization gate (HEQU), horizontal serration gate (HSER), and
horizontal sync (HSYNC). The vertical and horizontal signals are combined
to give composite sync signals which are in synchronization with the video.

The composite signals associated with a TV frame are shown in Figure 16.
Associated with each horizontal line are signals which are used in the

adaptive threshold. Since they are used in several locations within the

autoscreener, they are derived on the sync and timing board. These

56

———

e : T ol e

signals, shown in Figure 15, are the end of line interrupt (EOLINT) used
to interrupt CPU 1 to allow first level features to transfer to Memory 1,
horizontal sample/hold 1 (HSMPL1) used to sample the line integrator
output, horizontal clear (HCLEAR) used to clear the line integrator, and
horizontal sample/hold 2 (HSMPL2) used to determine the filter threshold

values.
The sync and timing board also outputs a continuous clock along with the

gated version. The sync and timing board has independent oscillators

for the 875 and 525 line systems.

VBLNK ™ 33H or 21H —+

VEQU 3H o B -4
VSER o B Y §
VDRIVE _l 9H ¥ 3 —f
—
INDEX L 1 CLOCK PULSE/FRAME 45
Figure 14, Vertical Timing
57

e, NN g e mina R ’ :

Suiurl], aulT] uUedoS [BjUOZIIOH

g1 aandiyg

I 2189

g =

_ SS¥9

by |

L.J 21dWSH

LJ PTERSL!

u
L |

L_J 17dusH

u

‘U INI703
ﬂmno"_ J3SH

{ 1 INASH

o e
) S %
I

B o

BN)

‘ HT® _ JATNCQH

ST OINTEH

/| BRI

=8

;'

030IA

. o —— L

58

© e —

B S e

(g2¢g J03 umoys) oukg surexg ajisodwo) ‘g1 3InI1 g

___:;___Ctm___::L:_::___:_:___

INAS
dW0)

JANTE
dW0d

X30NI

(REDE!

JATY™AA

JATYGH

59

kel s

SECTION V

SYSTEM HARDWARE SPECIFICATION FOR PATS

This specification gives information on how various functions in the PATS
hardware will operate. It does not describe each signal that is derived on
a board but informs the designer which inputs and outputs can be expected
for each individual module. This specification does not include the image

enhancement portion of PATS.
VIDEO INPUT

The standard video input is an 875-line, 60 fields/second, 1-volt peak
video signal. There is a total of 809 active scan lines with 66 scan lines
for vertical retrace. The total horizontal scan time is 38. 09 usec of
which 31. 09 usec are active and 7 psec are retrace. The input is from a
common module FLIR supplied by NV&EOL. Because of the resolution
of the FLIR, a single video field (1/60 secbnd) will be processed by the

hardware.

The PATS target screener will also accept the following video inputs:

® 525-~line standard TV video, single field (240 active scan lines,

each 63. 5 usec long, consisting of 53. 34 active and 10. 16 blanking)

@ 525~line standard TV video, full frame 2:1 interlaced format

(480 active scan lines)

60

. — - -

° % 5 Y L] Lx o ‘2
v i 5 ‘.'V‘-L ¢, ok,

T T
LY 4 L 2L e

b

PATS HARDWARE

The PATS hardware consists of seven basic functions or modules shown in

Figure 17. These modules will be broken up into several submodules and

discussed in greater detail later. The main modules to be discussed are:

Autothreshold--Accepts a video input and automatically determines

the edge and bright logic signals.

Interval Generation--Logically combines and validates the edge
and bright signal generated by the autothreshold and generates an

interval across a potential target.

First Level Features--Generates the features that are directly

transferred to a processing system.

Computer System 1--The main processing computer consisting of
a 16-bit, 2901-based CPU, 24 K x 16 memory, and a multiplier/
accumulator. Its function is to do bin or object matching, gener-

ation of additional features, and recognition.

Computer System 2--Provides for diagnostic capability as well as

interframe analysis and symbol generation software.
Intensity Data--Provides for real-time digitization of the video

data at 512 samples/horizontal line. Its maximum size is 512 x
512 x 8 bits.

61

ek o 25

Siuf] Teuonounyg SLvVd

LT 2andig

0J0IA

AVdSIa
1R E]
NOILVHINID
T08WAS
viva
ALISNILNI
4 r S34NLIV34 NOILVH3INID
W3LSAS W3LSAS 13A37 15414 WAUILN GT0HS3IHHLIOLNY
431NdW0J H431NdW0I
PO _

62

%,

a

"
"

+4 .ﬁ#"’f"é"-'“‘«u e

W

7. Symbol Generation--A memory used for the generation of a gpecific
symbol associated with a target. At some specified location, the

symbol is displayed on the FLIR display.

For each of these seven functions, the type of inputs expected to be avail-
able, the outputs expected, signals that have to be derived on the board, and

the technology to be used will be described.

AUTOTHRESHOLD FUNCTION

The autothreshold section (Figure 18) is primarily an analog processing
section. This section derives the logic signals associated with an edge,
and hot and cold objects. This is done by comparing an analog signal with
an adaptive threshold. The result of the comparison gives a logic signal

stating whether the data are above or below the threshold.

The autothreshold consists of two separate parts: the edge signal derivation

and the hot or cold signal derivation. The specific requirements for each

.of these sections follow.

The edge signal is based upon the following algorithm:

Edge

I(n+1,k) + I(n, k) + 2I(n-1, k)
I(n+1,k-1) + 2I(n, k-1) - I(n-1,k-1)

where

n = gcan line number

~
]

position in scan line

-
[}

delay time

63

3

2 S

0702 AHVNIS

aanjonig proysarylony ‘g aandig

31| O010HSIYHL
FULTTT]

\ 431114
aNNOYINIVE
o AL L_3ALLdvaV /
10H AHVYNIS .
010HS3IYNHL
3 3903
IAILIVOV
\a
3903 AHVNIS 4 -
3903 1903

030IA

64

.

———

T TS

The implementation is shown in Figure 19, The edge threshold is TE:

T(E) = K(E) * VAR(N-1)

VAR(N) = @ * VAR(N-1) + (1-@) * 1/SL T]e]

K(E) = a constant

o = recursive filter constant
SL. = scan line time
|e| = edge signal absolute value

The implementation for the edge threshold is shown in Figure 20. Table 6
gives expected available inputs, the type of output expected, some of the
signals that will have to be derived on the board, and the type of technology

or special parts that will have to be used.

The second portion of the autothreshold is the adaptive bright signal gener-
ation (Figure 21). This primarily consists of a background filter and an

adaptive threshold.

The background estimator is a two-dimensional recursive low pass filter.
This filter, shown in Figure 22, consists of a switch which controls the
input, a low pass filter whose RC time constant is a few pixels, and the
recursive filter whose parameter g determines the number of scan lines
it takes to build up to the background level.

65

e b
F e T

-

1

3903
AUVNIE

uo1ljeAlIa(Teusdts adpH ‘61 2InSig

QT0HSIHHL
31903
3 IAILdVOY
+
v
- 3 3INIT AV13G
03ddv1
AV130 3NN
WINOZIHOH

++

AVI30 3NN
TVINOZIHOH

030IA

66

g !

R 7 e

PIoysaxyy, a3py sandepy ‘0z sandig

703 1V 31dNVS

H/S

103 4314V 3TdNVS

ELTh

3NIT 40 ON3 - 103

i u_.”a-_r_-zxguuzi‘,

Ngyaa-3)

{

3903

INDINVIE

4vin

67

TABLE 6. EDGE AND EDGE THRESHOLD DERIVATION

Inputs:
1. Video--525 or 875 with or 5. Sample/hold at end of line--TTL
without sync 6. Sample/hold after end of line--TTIL
2. Composite blanking--TTL 7. Clear integrator--TTL

3. Horizontal blanking--TTL
4, Clock--455/horizontal line
ungated--TTL

Outputs:
TTL--edge
Derived in Hardware:

1., Edge--

° Based upon three horizontal lines
e Horizontal component only
° Expandable to include vertical component

2. Edge threshold--based upon previous edge scan line averages.

3. Analog edge should be 5 MHz low pass filtered before the threshold
is derived.

4, Scan line integrator shall be switchable for either 525 or 875
line time.

Technology:

CCD321A3 will be used for horizontal scan line delay, operating in
multiplexed mode giving 910 samples/scan line.

68

a10d

10H

proysaay], jysiag aandepy

103 LV 3 1dWYS

H/S

H/S

dW0)

dW0

703 Y313V 3dWYS

12 aandig

NI

L)

HIL1IMS

E

ONINNYIE H

69

sav

TETRIE]
aNNOYONIVE 30IA

| s gioe.

....... =
W1
== LOW PASS L™ PASS
S FILTER FILTER ACROSS BACKGROUNI
| ACROSS SCAN - SCAN " ESTIvYE
1hPUT e LINE DIRECTION

.

F1
FROM PREVIOUS
SCAN LINE

Figure 22. Background Estimator

The switch is controlled by the previous line interval which has been stored
by the interval generation module. The switch precludes target-like data
from appearing in the background estimate. The results of video without

the switch are shown in Figure 23.

The bright threshold derivation is shown in Figure 21, It is very nearly the
same as the edge threshold except that there are separate multipliers for
the hot and cold thresholds.

Table 7 presents the specific requirements for use with the adaptive bright

threshold. For both the edge and bright, Figure 24 presents the relative

timing for use on the autothreshold.

70

PREVIOUS LINE

F1
4
! |
] I | INPUT
TARGET |
! I
| |
| I NUTPUT OF
LOW PASS FILTER
| I A___—_______,,———"" ALONG SCAN LINE
e e b 1

1 f

TURN TURN
OUTPUT WITHOUT
SWITCH OFF SWITCH ON SWITCH

W

Figure 23. Background Filter and Switch Rationale

TABLE 7. ADAPTIVE BRIGHT DERIVATION

Input:
© 1 volt pp. video 525 line or 875 e Previous line interval
e Composite blanking TTL e Sample/hold at end of line--TTL
® Horizontal blanking TTL ° Sample /hold after end of line--TTL
@ Clock 455/horizontal line time ° Clear integrator--TTIL
Output:

e Binary hot--equal to logic "one'" when data are above the hot threshold
e Pinary cold--equal to logic "'one' when data are below cold threshold

Derived in Hardware:
1. Bright threshold--based upon previous scan line averages of intensity-
background.

2. Intensity-background analog data should be 5 MIlz low pass filtered
before the threshold is derived,

3. Scan line integration shall be switchable,

Technology:

CCD321A3 will be used as part of the recursive filter,

71

S —————— : e 2
) oo o T, el e

TR ¥

—— LITSMIE AT e AR X » 2

R

&

PTOYSaIyony I0j Sutwii], aur] ueog aAlje[ay

‘g sandrg

(93sn G°€G/93sn z€ NI SISINd XJ07I GSb) ZHW L¥0S°8/ZHW S/8T12°HT SNONNILINOD T %3G

: 27

"

23sn 2-1

v

Tad

) TR AR

01/¢

dv3in

103 ¥314Y 37dWYS

72

103 1V 37dWvS

ONIJNYT8 TWINOZIYOH

INTERVAL GENERATION

The interval generation (Figure 25) is the logical combining of edge and
bright information that determines the regions of possible targets. It is in

synchronization with a master digital clock.

In the start/stop criteria (Figure 26), a potentially bright interval is filtered
by an M or N criteria (M = 4; N = 5). If there are M of N brights, the inter-
val is turned on. Note that delay lines must be provided to give proper
phasing of the edge and bright signals. Part of the phasing difference

comes from the analog processing and part is inherent in the start/stop

criteria.

The edge data must also be filtered by a set of M of N (M = 3, N = 5) require-
ments. In the edge criteria, we have a valid edge if any one of the three
adjacent lines has a good edge or if three adjacent lines each have an edge
associated with three pixels (0, +1) of the 1 oint being considered. This is

shown in the bottom half of Figure 26.

The validation criteria requires that an interval be declared valid if any

me of the following three conditions occur:
1. An edge occurs at the start of a bright.
\n edge occurs at the end of a bright.
\ wdge occurs at both the start and end of a bright.

o w rowided for conditions 1 and 2. If both conditions 1 and 2
- e maust he set,

e ——

A

INTERVAL

CLOCK
EDGE
START/STOP VAL IDATION
CRITERIA CRITERIA = G00D
HOT
CoLD

Figure 25, Interval Generation

The interval data that are stored for controlling the switch in the background

estimator must only be valid interval data.

An interval will also be declared invalid if the interval width exceeds 32. 3
A bit will be set indicating that the width has exceeded 32. The width count

will then indicate by how much it has exceeded 32 up to a maximum of 32.

This states that we can declare an interval between 32 and 63 as invalid and
still have the correct count. However, if the interval exceeds 63, the in-
valid interval bit must still remain set and the width count shall be set to

zero,

*The total width count for a TV line is 512, Thus, the maximum interval

is 1/16 of a TV line.

74

R ———
" SRR)

S s T

TR T

elI9j11) dojs/3rels 9z sandig

aNv _ y
AvI30
e 4
= oo wisio V_
: 3 [AVIIU |
wn
wi9i0
L uo anod aov
-
3903
L—{ aw0d oav
N .
03Av130 Vg0
—IVABIINI W1910
AV130 AvY30
ww_....n wn wn
w190 wusie
" anod oav = oL
WAUILNI
-
aw0d aav -
T wn
-uw_nu AvV130 AvV130
W11910 w190

10

00

75

I

S

Table 8 presents the input and output requirements for the valid interval

generation. These data will be developed in conjunction with the first level

features since they contain the counters for the features and multiplexers
for the data.

TABLE 8, INTERVAL GENERATION

Input:
e Edge--TTL
e Hot--TTL
e Cold--TTL
e Clock--TTL, continuous, rate = 512 pulses/scan line
e Horizontal blanking--TTL
Output:
1. Valid interval data
2. Valid interval data delayed by one line
3. Bit indicating edge at start of bright
4, Bit indicating edge at end of bright
5. Valid interval pulse at end of valid interval
Derived in Hardware:
1. Proper phasing of edge and bright signal
2. Comparison and ORing to provide proper M of N start/stop criteria
3. Delay to include all of bright after start/stop declares that data
meet M of N requirements
4, Pulse to exclude first 10 scan lines of image
5. Pulse to exclude first and last few pixels of each scan line
Technology:

TRW 256-bit shift registers used for 1/2H scan line digital delay

76

o W il

FIRST LEVEL FEATURES

Associated with each of the good or valid intervals are several features
that contribute to the detection and recognition of an object, These are

known as the first level features.

The valid interval pulse must be counted for each scan line. If the number
of valid intervals exceeds 16, a bit shall be set and no more data shall be

allowed to transfer for that scan line.

Three 16-bit words are generated or available as part of the first level

features. With least significant bits first, there are:

Word 1
Width
X Position
Hot/Cold (H/C)
Word 2

Background Estimate 8

Sum of Intensity 8 s
L Word 3

Bright Count
Spare

‘;’ Edge at Start
Bl Edge at End
f

= = O O

41 1

v % 3
A T “_‘ ! oL 0]

L e e

In Figure 27, the first level feature organization is shown. For word 1,
the width count is a count of the width of an interval. It must be counted
even though it may later be declared an invalid interval because there are
no edges. The position is the true position of the start position of the
interval in the scan line, The H/C bit indicates whether the data are above

or below the background.

Word 2 is described in the intensity data description. The data must be

latched at the end of an interval, however, so more data can be accumulated.

Word 3 contains the count of the number of brights during an interval. It
will always be less than or equal to the width count. Also in word 3 is the
edge count, which is the number of edges during the interval and the associ-

ated bits indicating the location of edges relative to bright.

Table 9 presents information on the first level feature generation. Note
also that this requires interfacing with the interval generation, CPU 1, and
the intensity data.

INTENSITY DATA

The intensity data consist of two separate digitizations. Thesge are the
background feature (Figure 28) and the video intensity (Figure 29). The
background is an 8-bit digitization of the analog background estimate taken
at the start of an interval. At the start of an interval, a fast sample/hold
is initiated and then converted within 325 nsec. This becomes the back-

ground estimate which goes to the first level features.

78 £

e e ek ¢

Saanjeaq [9A9d7 JSa1 g °22 aand g
\\
] ALISNILNI 30 WNS
%3
QoM
Fd
/8 J1VWILSI ONNOYINIVE
/
ﬁ /6 NO1L1SOd X
" A / H3ILNNOD %3013
ayom | [/9 H1OIM TVAHILNI
40 ON3
HILV
TVAUILNI
\ N\
XVW it \ 0109/10H
8v
anv
0109
/ ¥31NNOJ :
- 132
/9 LHO148
:_ anNv
24 A 10H
/
SR A N3 1v 3903
P 14vis1v 3903
\
9/ 3uvds
9
\ ~v= — - viva 000
L STVAHILNI

40=

79

TABLE 9. FIRST LEVEL FEATURES

; Inputs
5 e Good or valid data pulse--TTL
e Edge--TTL
e [Edge at start bit--TTL
e Hot bright--TTL
e Cold bright--TTL
e Interval--TTL
e Background estimate (8)--TTL
e Sum of intensity (8)--TTL
e Horizontal blanking--TTL
e Continuous clock (512/scan line)~--TTL
Outputs:
e 16-bit tri-state buffered lines 16 TTL
° Width counter 6 TTL
e Number of intervals 4 TTL
e Number of good intervals/bit 1 TTL
e End of interval pulse 1 TTL
Derived:
1. Relative X position
2. Delay for each signal as appropriate to be counted in
synchronization
3. End of scan line interrupt
Technology:
Low-power Schottky 16 MHz

| 3§ 80

15 | w”"f ey

st ey it

BACKGROUND VIDEQ 8 BACKGROUND
Ny YU S/H | BSNEEST A/D +.
ESTIMATE

START OF_INTERVAL T

Figure 28. Background Feature

The video intensity data consist of a high speed A/D conversion (62 nsec
for 875 line), a high speed 12-bit adder, and an intensity memory. The
A/D is on for the entire field and all data are digitized and stored. There
are a total of 512 samples per scan line with 6 bits of intensity. The A/D
converter is an 8-bit converter but only the 6 MSB are used in the appli-
cation. Since the data maximum value is 26 and the maximum interval
length is 25. 11 bits in the adder would be sufficient, It is anticipated that
4-bit summing modules would be used and hence the 12 bits. At the end
of the interval, the 12-bit sum is latched and transferred to the first level

features. The latch is cleared after the data have been transferred.
The intensity data to be stored in Memory 2 are changing approximately

every 65 nsec. In order for memory to accept this fast rate, a scheme

must be developed which would allow the memory to be low power and yet

81

5 ﬂ 3
REBLRR OV 4 P2t I o
aanjead ANsusjul *gZ AN &
3
Ja
- TVREIINT
HILVY viaav
JTER] uaa P
SILLISNILNI ..
/ P - 3
soowms /3 /
»W»A
™~ ¥
© %
*
X
9X96Z X ZI§ NOISHIANDD
7= AHOWIW anv
-~ L EL LY |

be randomly accessible. Such a scheme is shown in Figure 30. A single
bit plane is implemented with shift registers on the input and output.
Average random access time from CPU 1 should be around 200 nsec. The
scheme presented allows for eight values to be available with a cycle time
of about 375 nsec. Omne only has to give a starting address and then an

address increment eight larger to get the next eight values, etc.
Table 10 gives the background requirements, and Table 11 presents the
video intensity requirements. Memory 2 requirements are shown in

Table 12. All interact to provide the intensity data.

TABLE 10. INTENSITY DATA--BACKGROUND

Inputs:

e Interval--TTL

e Continuous clock--TTL

e Background estimate-analog--0to 1V
Output:

e 8-bit background estimate

Derived within:

1. Sample/Hold at start of interval
2. Conversion complete

Technology:

High speed A/D--300 nsec

83

o

)

sauerd g AIOWSN PIald 03PIA *0€ dandig

sns
1962
193138 5
anv
4 ss3voav
ﬁ kv NOWW0
iy ‘I‘||I., A L « f...
(<o) =
% - «— s 9 ja— ;
l«—— ¢ s ja— $
N e !
HILVY ! 8XN9L HUVY A.MN.I us ,
118-8 T.I 9 o | Le-g 184
MG ? fa——
2 , l«—| ¢ g w—
< -« PN £ 0
e |
|
_ NL8 __
a/v ”
{

8+NSNg NSN8

p TABLE 11, INTENSITY DATA--A/D AND SUM OF INTENSITY

Input:
e TV video--Analog 0to1lV
e Horizontal blanking--TTL
e Composite blanking--TTL
e Continuous clock--TTL
Output:

° 6-bit intensity data--TTL
® 12-bit sum of intensity over interval--TTL (8 bits to FLF)
Derived:

e Convert data at clock rate pulse
° End of summation

Technology:

e A/D--TRW 8-bit video converter
° Low-power Schottky

' TABLE 12, INTENSITY DATA--MEMORY 2

Input:

° 6-bit intensity data--TTL
| ° Continuous clock--TTL

e Horizontal blanking--TTL
Output:

e 6-bit, 512 x 256 video data stored in image format

Derived within:

T e X address
! ® Y address
® Interface to CPU 1 . g .
. Interface to CPU 2 } Do with respective CPU
i Technology:

e Fujitsu Dynamic RAMs, 16 K x 1

Notes:

Expandable to 512 x 512 x 8 bits

85

L et = ;,.;.‘4,::‘1,1—» _J yir' . ! ! o~ AT

COMPUTER SYSTEM 1

Computer system 1 shown in Figure 31 must accept the inputs from the
first level features' portion at the end of each interval. It must also access
the intensity memory (Memory 2), be able to use a parallei I/O multiplier/

accumulator, and interface to CPU 2.

At the end of each interval, an end of interval interrupt will occur which
will tell the hardware that is part of CPU 1 to load 3- to 16-bit words into
FIFO 1. The FIFO will have approximately 325 nsec to accept the three
words before a new set of data might be available. At the end of each scan
line, the number of intervals for that scan line will be available so that
DMA transfer of the data can occur. Data from FIFO 1 to FIFO 2 will
occur and then data will be transferred to Memory 1. The CPU will wait
for the DMA transfer to occur. The Memory 1 interface is shown in

Figure 32.

Memory 2 will be accessed typically after all the data in Memory 1 have
been preprocessed. Generally Memory 2 will be used as input to the

multiplier/accumulator for moment calculations.
The interface between CPU 1 and CPU 2 will handle DMA access to Memory
1 and Memory 2 and might possibly handle the microprogram memory

transfer during development of the software.

3 Table 13 gives some of the requirements of CPU 1 and its associated

memories.

! 86

TR

R TN

AD=AD60 850 HONEYWELL INC MINNEAPOLIS MINN STSTEMS AND RESEARCH ==ETC F/6 17/%
PROTOTYPE AUTOMATIC TARGET SCREENER. (U) :

SEP 78 D E SOLAND: P M NARENDRA: R C FITCH DAAKT70=77=C=0248
UNCLASSIFIED TESRCS4-3

_ NL
END
DATE
FILMEQ
i OI o !9

\‘\
o

1 wajisLg aandwo) °1g aandig

HOLVINWNIIV
/43NdILINN

vivo

avol

wan

Y3LNANOIOUIIN

waav

035V8 1062 o

waw
: (NV3S 30 18V1S
; JH3LNI 21901 “INN 40 ON3)
2084 _- 2 JULTTEICT Sl

2084 [i i + ﬁ 2 2
9% w821 ol | stxwm SN
ZWvy aav L Wvy SHAOY uxm
L Wy 0414
"y0av 030IA

43143ANOD

¢
aiv 030IA

. AR SR R T TR T T |

[
°
34013

- T RN R 0
e L

aoejIajul /uonyeandyuo) [AIOWIN ‘ZE dIn31g

e—
Eaiset

5 IR T
‘i&:e!i o

i
sng \ A
STVNSIS 1041NOD ¥
R | e et r T
1n0g 30 5
wy 419 sns)
vaav /934 $S3Y0aV/ViVE
(SdIHI WvY /51 ‘Haav 1 HOSS320U4d
LX Ny~ 26)
goLxXmyg
L WYY ©
!—Q ©
’ L ‘934
‘010H
43151934 V1V 104N kit S Gk
LY] LY,] b |
/ Bl . ot sn 3
/9 AHOW3W Adowaw | /98 Viva 1wt _”
0414 0414
\ﬁr il SIVAN2LNI |
N 7y 40 ¥3INNN :
|
¢

———— ———— - ——————— e — T |
= - = R . PR SOP PSRN SR - Sl o .d

TABLE 13. CPU 1

T Y

Inputs:

e 3- to 6-bit word at maximum rate of occurrence every 325 nsec
(every 5 clock periods) from first level features

e Intensity data 6 to 8 bits in magnitude

Outputs:

e Must transfer position and target classification data to CPU 2

Processing:

1. Access Memory 2 with average cycle time of 200 nsec
2. Moment calculation
3. Use Memory 1 for scratch pad

Technology:

e Bipolar microprocessor--AMD2900 family
e Multiplier--TRW

Interfaces:

e Provide control for FIFO based upon an end of interval interrupt
and an end of scan line interrupt

e Provide handshake to Memory 2
e Allow for DMA access to Memory 1 and Memory 2

e Provide interface to multiplier

Memory 1 Size:

8 K x 16 for first level feature
8 K x 16 for scratch pad and secondary feature

8 K x 16 for k-nearest neighbor prototype

24 K x 16 bits

I

CPU 2

The CPU 2 with symbol generation shown in Figure 33 is a commercially
available 16-bit computer system. Its function is to do the interframe
analysis, generation of symbol software, and training data gathering and

diagnosis.

It is anticipated that this computer will be a DEC LSI 11/2 so that it will fit
inside the box chosen for the rest of the hardware. The inputs to the oper-
ational software will be position and target classification. The output will
be position information and data for loading symbol memory. The symbol
memory will be loaded during vertical retrace. The parts to be included
for the CPU 2 are:

1 KD11-HC 11/2 with 16 K Memory
2 KEV11 Fixed and Floating Point --Instruction Set
3 MRVI11-AA 4 K PROM/ROM Board--Instruction Set
4 DLV11 Serial I/O Port
5 REV11-C Refresh Bootstrap Diagnostic Board
6 DCK1l1-AC LSI Interface Kit (2)
7 H9281-BB Backplane/Card Guide--8 slots
8 RXV11-BA Dual Floppy Controller
9 LSI20-HE Decwriter (Keyboard/Printer) with cable
10 QJO13-CY RT-11 Software
11 QJ813-CY Fortran IV Software
12 QJV11-CB PROM Formatter Software

uonyeandyuo) Z NdD

‘gg aansi g

AV1dsia
414

NOILVHINID
T08NAS

030IA ¥ITY

14) NJusAor

91

= Ndd

JSIG Add0 13

Symbol Generation

The symbol generation consists of a 256 x 256 1-bit plane for the storage of
the symbol. This makes symbol generation simply a matter of turning a
set of bits on or off. The proposed scheme for the symbol generation is

shown in Figure 34. Table 14 below gives the 1/O requirements.

TABLE 14. SYMBOL GENERATION

Requirements:

1. Must interface to DEC LSI 11/2 computer
2. Memory storage to be on DEC interface board

Inputs:

e Y Position (line number)--TTL
e Continuous clock--512 pulses/scan line
e Composite blanking--TTL

1. Serial data stream whose horizontal resolution is 256 values
per horizontal scan line

2. Vertical shall remain on for two scan lines.
3. Data should be repeated for second field.

4, Data to replace incoming video
Derived:

e X position data
e Refresh or change memory during vertical retrace

92

e

030IA

T0INAS

H1M
-

030IA

HILIMS
907VNY

*

)

uoljeIaU’dn [OqQUILS °pg auandig
(ZHW 8) ¥2013
NOLLISOd X
Y3INNN 3NN
HOLVHINII SSINAAY
~avo? 1
ssavaay x/./ N ssauoava
NOD
S/id I x96Zx962 T
l.*lA (]
9l st

93

SYSTEM TIMING

Even though it is not brought out as a function, the system timing shown in
Figure 35 is necessary as input to many of the boards used in PATS.
Primarily, the timing board will consist of a sync separator and gated
oscillator which give the appropriate number of clock pulses for the CCDs
and give appropriate pulse widths indicating the number of clock pulses
counted out since the beginning of the scan line. Table 15 lists the sync

or master timing requirements.

TABLE 15. SYNC AND TIMING

Inputs:

° Composite video

Outputs:
e Composite blanking--TTL ® 455 pulse--TTL
e Horizontal blanking--TTL e Sample/Hold at end of line--TTL
e Vertical blanking»=-TTL e Sample/Hold after end of line--TTL
e CCD clock--TTL e Clear integrator--TTL
e Digital clock--TTL ® 455 gated clock--TTL
e 512 pulse--TTL e 512 gated clock--TTL

Derived within:

e Continuous digital clock whose frequency is 512 clock pulses per
horizontal active scan line

e Continuous digital clock whose frequency is 455 clock pulses per
horizontal active scan line

94

oot ST R

X
ANTPVR RSN e

——— 7,‘ .‘

(s.033 01)
N1IS

(311S04W02)
AN18D

R o

Surun J, pue Suiziuoayouls waisAg °gg aaIndig

o 43INNOD

SS¥:

401V1119S0 | g— 1041NOD

—> (311S04W02)

e 2 03Lvo %3019
525 —te o si8
(V1NOZIYOH) NOLLVHINID |g—
WN18H - ININNYIE
TQHH_ sis—fe _eo— s
(1WIILH3IA) NOILVH3IN3D
ANTEA . ININNYIE

INASY

H01Vyvd3s
INAS

1ndN1
[*—— g3qiA

95

MECHANICAL

The PATS should fit into 1 ATR large box. The box's external dimensions

are approximately 10. 0 inches wide, 10.4 inches high, and 19.4 inches deep.

CPU 2 will also fit into this chassis. The chassis is shown in Figure 36;

the layout of cards, power supply, and cooling are shown in Figure 37.

The card dimensions for all the cards except the CPU 2 are approximately

9 inches x 6% inches. The card outline is shown in Figure 38,

POWER

Switching power supplies will be used for the digital hardware and CPU 2.
The analog power requirements are not yet well enough defined to determine

the linear power suppliés.

Power which should be available is as follows:

+5V 35A

-5V 4A

+15V 10A

-15Vv 10A
96

P ——
s mna L

e e ——

d
J

r 3 RTL
uojerndyuo) reo1sAyqd SLVd '9€ aandig r
B
a0y
VHN3

. ; B
uty ot SINIOd 1S31

ANVL

O 0 G
PP

AL T13A37 03aIA

Q@@ Q@@

o
P

Y3INIFYIS L3VYvL JILVROLNY 3dALOLOYd

Q@@

.

sayout Q1

noke] Ted1SAYd SLVd L€ dandig

= SqyyYd 8

2 2
* 9NI1002 =
= aNY 8
o =z
2 SQuvd 02 koo 4 8
=4 2 Ndd S S
= = wv
&

Saydut p'61

98

ad

—— ——

sl L

0.9

" G

e IS
t

- ~ -

-

~ 9 w
PATTERN REVISION S-70 1006 7820-101 SHEET 2

DATE OF LATEST

-

WEE PRy e

99

Card Outline

Figure 38.

R Trs ot i AR / x . WO T

SECTION VI ,

PLANS FOR THE NEXT REPORTING PERIOD

During the next three-month reporting period, we plan to complete the
design of CPU 1 and Memory 1. We will also begin microprogram coding
for CPU 1. Detailed design of the feature extraction circuitry for Memory
2 will be completed and all boards will be fabricated as parts become
available. With the exception of the symbol generation board, all design
tasks should be essentially completed during the reporting period.

100 P

